Inhibition of VEGFR-2 Reverses Type 1 Diabetes in NOD Mice by Abrogating Insulitis and Restoring Islet Function

نویسندگان

  • S. Armando Villalta
  • Jiena Lang
  • Samantha Kubeck
  • Beniwende Kabre
  • Gregory L. Szot
  • Boris Calderon
  • Clive Wasserfall
  • Mark A. Atkinson
  • Rolf A. Brekken
  • Nick Pullen
  • Robert H. Arch
  • Jeffrey A. Bluestone
چکیده

The dysregulation of receptor tyrosine kinases (RTKs) in multiple cell types during chronic inflammation is indicative of their pathogenic role in autoimmune diseases. Among the many RTKs, vascular endothelial growth factor receptor (VEGFR) stands out for its multiple effects on immunity, vascularization, and cell migration. Herein, we examined whether VEGFR participated in the pathogenesis of type 1 diabetes (T1D) in nonobese diabetic (NOD) mice. We found that RTK inhibitors (RTKIs) and VEGF or VEGFR-2 antibodies reversed diabetes when administered at the onset of hyperglycemia. Increased VEGF expression promoted islet vascular remodeling in NOD mice, and inhibition of VEGFR activity with RTKIs abrogated the increase in islet vascularity, impairing T-cell migration into the islet and improving glucose control. Metabolic studies confirmed that RTKIs worked by preserving islet function, as treated mice had improved glucose tolerance without affecting insulin sensitivity. Finally, examination of human pancreata from patients with T1D revealed that VEGFR-2 was confined to the islet vascularity, which was increased in inflamed islets. Collectively, this work reveals a previously unappreciated role for VEGFR-2 signaling in the pathogenesis of T1D by controlling T-cell accessibility to the pancreatic islets and highlights a novel application of VEGFR-2 antagonists for the therapeutic treatment of T1D.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPV1+ Sensory Neurons Control β Cell Stress and Islet Inflammation in Autoimmune Diabetes

In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despit...

متن کامل

PD-L1–Driven Tolerance Protects Neurogenin3-Induced Islet Neogenesis to Reverse Established Type 1 Diabetes in NOD Mice

A breakdown in self-tolerance underlies autoimmune destruction of β-cells and type 1 diabetes. A cure by restoring β-cell mass is limited by the availability of transplantable β-cells and the need for chronic immunosuppression. Evidence indicates that inhibiting costimulation through the PD-1/PD-L1 pathway is central to immune tolerance. We therefore tested whether induction of islet neogenesis...

متن کامل

Rotavirus infection accelerates type 1 diabetes in mice with established insulitis.

Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet beta cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a ...

متن کامل

Androgen treatment prevents diabetes in nonobese diabetic mice

The nonobese diabetic (NOD) mouse strain provides a model system for human autoimmune diabetes. This disease model is extensively used not only to examine the etiology and pathogenesis of diabetes, but also as a means to evaluate therapies. In NOD mice, the disease progresses from insulitis to islet destruction and clinical diabetes in a high percentage of female mice. In this study, androgen t...

متن کامل

Expression of somatostatin receptor subtypes 1-5 in pancreatic islets of normoglycaemic and diabetic NOD mice.

OBJECTIVE Somatostatin acts on five specific receptors (sst1-5) to elicit different biological functions. The non-obese diabetic (NOD) mouse is an experimental model of type 1 diabetes. The aim of this study was to investigate whether the islet expression of sst1-5 is affected during the development of diabetes in NOD mice, with insulitis accompanied by spontaneous hyperglycaemia. METHODS By ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013